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This paper will discuss the current viewpoint of the vacuum state and explore the idea of a
“natural” vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored
for all primary quantum numbers to show consistency with observation at the level of Bohr theory.
A comparison with the Casimir force per unit area will be made, and an explicit function for the
spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit
function will be numerically modeled using the industry multi-physics tool, COMSOLR©, and the
eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

PACS numbers: 03.65.-w, 31.15.-p, 31.15.X-, 52.35.Dm
Keywords: vacuum, Casimir, Bohr radius, acoustic, fluctuation, fermion

I. INTRODUCTION

The current viewpoint of the quantum vacuum, or vac-
uum state, is that it is an immutable, non-degradable
state for all observers and systems with no structure or
variation. The concept of the vacuum state is typically
introduced as a ground state of a harmonic oscillator,
so the viewpoint that it is immutable is reasonable. How
can the vacuum, being the ground state of a harmonic os-
cillator, be anything other than “zero” for all observers?
What if, however, the vacuum could be posited to be a
plenum that can be shown to be degradable, and has the
capability to support particle-vacuum or particle-particle
interactions that allow lower energy, ground states? It is
known from experimental observation that the vacuum
can exhibit characteristics that can best be associated
with a degraded vacuum in the form of the Casimir force
[1–10]. The Casimir force arises as a result of a geomet-
ric conducting boundary in the form of two plates being
placed in close proximity to one another such that the ge-
ometry of the cavity can preclude the ability for certain
wavelengths of light from being present in one direction.
The integral of the spectrum of vacuum fluctuation fre-
quencies in between the two plates has a different starting
point than the integral of the spectrum of vacuum fluc-
tuation frequencies outside of the plates. The difference
between these two integrals is what is considered to be
responsible for the manifestation of this force. In this sce-
nario, the vacuum state between the two plates is consid-
ered to be at a lower state than the vacuum state on the
outside of the plates, or the toy vacuum model harmonic
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oscillator is at a lower state than the “zero” state outside
of the plates. Perhaps this is illustrating a deficiency in
the way in which the vacuum state is described and un-
derstood. The Casimir force strongly indicates that the
vacuum is degradable, however, this concept is at odds
with the idea of a zero state of a harmonic oscillator, so
perhaps a prudent path to explore is to consider the con-
cept that the quantum vacuum is a bit more “natural”
than a toy harmonic oscillator and can have spatial and
temporal variations, and to see if this mutable quantum
vacuum identifies with any inconsistencies with observa-
tion.

II. VACUUM “DENSITY”

The idea of a vacuum “density” expectation value will
be explored by first starting with the Bohr formula that
relates allowed energy levels to the primary quantum
numbers. The energy for the nth primary quantum num-
ber level of the hydrogen atom is given by the Bohr for-
mula in Equation (1).

En = −
[
m

2h̄

(
e2

4πε0

)2
]

1

n2

= − 1

n2
13.6eV, n = 1, 2, 3, ... (1)

The allowed “orbit” radius for this energy level is shown
in Equation (2).

rn =
4πε0n

2h̄2

e2me

= n2 5.29×10−11meters, n = 1, 2, 3, ... (2)

Equation (3) shows the energy relationship with the pri-
mary quantum number for the nth level associated with
a hydrogen-like atom with the atomic number Z.

EZ,n = −Z
2

n2
13.6eV, n = 1, 2, 3, ... (3)
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The allowed “orbit” radius for the energy level for any
atom with atomic number Z is:

rZ,n =
n2

Z
5.29×10−11meters, n = 1, 2, 3, ... (4)

The historic perspective used in the development of
the above relationships was that of the electron being in
“orbit” around the nucleus in a quasi-classical sense. It
is appropriate to think of these energy states as a wave
function [11], so one can calculate an average “density” of
this energy state by smearing the energy over a spherical
region encapsulated by the allowed radius for that state
(see Equation 5).

〈ρ〉 =
EZ,n

c2 4
3πr

3
Z,n

. (5)

The average density for hydrogen is calculated for the
n = 1 to n = 7 states in TABLE I.

TABLE I: This table shows the derived “density” of a
given energy state n, with Z = 1

na radius(m) E(eV ) E(J) ρ
(
kg/m3

)
1 5.29 × 10−11 13.60 2.176 × 10−18 3.905 × 10−5

2 2.11 × 10−10 3.40 5.440 × 10−19 1.525 × 10−7

3 4.76 × 10−10 1.51 2.418 × 10−19 5.952 × 10−9

4 8.46 × 10−10 0.85 1.360 × 10−19 5.959 × 10−10

5 1.32 × 10−9 0.54 8.704 × 10−20 9.997 × 10−11

6 1.90 × 10−9 0.38 6.044 × 10−20 2.325 × 10−11

7 2.59 × 10−9 0.28 4.441 × 10−20 6.774 × 10−12

a The primary quantum number n is only varied from 1 to 7 here.

The question can be raised on what the calculated
value for the average “density” really means —does it re-
ally indicate a perturbation (rarefication or densification)
of the quantum vacuum, or is it just a number that has
no physical interpretation? To help consider this ques-
tion, an equation can be fitted to the radius and density
data presented in TABLE I and the result is shown in
Equation (6).

ρ (r) =
2.98968× 10−46

r4
. (6)

A. Casimir Discussion

Equation (6) shows that the density value is dependent
on 1/r4, which is a similar dependency to the Casimir
Force. At this point, the equation should not be viewed
as a real continuous function; rather, it should be consid-
ered as a function that can only be used with the allowed,
discrete values for the radius as input values. Recall that
the Casimir force per unit area is (1/c2 added for unit
consistency):

1

c2
F

A
=

1

c2
h̄cπ2

240d4
(7)

One can use Equation (7) to calculate a Casimir “den-
sity” value for the hydrogen primary quantum numbers
1 − 7 by equating the distance, d, to twice the allowed
orbit radius, 2r. In a sense, the electron establishing
a “boundary” at this radius could be envisioned as set-
ting up some sort of boundary condition that mimics a
Casimir cavity of sorts. These values are calculated and
compared to the average density with a ratio provided in
TABLE II (again Casimir force per unit area is multiplied
by 1/c2 for units consistency).

TABLE II: This table compares the derived “density”
of a given energy state n, with Z = 1 to the Casimir
density for a cavity with a separation distance of 2rn.

n radius(m) ρ
(
kg/m3

)
Casimir

(
kg/m3

)
a Ratiob

1 5.29 × 10−11 3.91 × 10−5 1.16 × 10−4 2.96
2 2.11 × 10−10 1.53 × 10−7 4.51 × 10−7 2.96
3 4.76 × 10−10 5.95 × 10−9 1.76 × 10−8 2.96
4 8.46 × 10−10 5.96 × 10−10 1.76 × 10−9 2.96
5 1.32 × 10−9 1.00 × 10−10 2.96 × 10−10 2.96
6 1.90 × 10−9 2.33 × 10−11 6.88 × 10−11 2.96
7 2.59 × 10−9 6.77 × 10−12 2.00 × 10−11 2.96

a This is the Casimir force per unit area multiplied by 1/c2.
b This ratio is the Casimir column value divided by the ρ column

value

TABLE II shows that the values will be equal if there
is a factor of 1/3 added to the Casimir force per unit
area ×1/c2. As a short side discussion to help possibly
provide an explanation for the 1/3 factor, consider the
Friedmann equation:

ä

a
= −4πG

3

(
ρc2 + 3P

)
In order for there to be a universe that is accelerating as
evidenced by observation, the equation of state for the
vacuum, P = wρc2 must be such that P < −ρc2/3, or
w < −1/3 [12]. If the equation of state of the quantum
vacuum is just such that w ∼ −1/3, this might explain
the need for the addition of a factor of 1/3 in TABLE
II. It could be posited that the predicted altered ground
state of the vacuum around the Hydrogen nucleus result-
ing from the presence of the “orbiting” electron may be
responsible for helping establish the stable energy state
and preclude the “orbiting” electron from radiating down
to the nucleus. An approach similar to this was also suc-
cessfully explored in [13]. Equipped with this insight,
one can combine Equation (5) and Equation (7) to yield
Equation (8)

〈ρ〉 =
EZ,n

c2 4
3πr

3
Z,n

=
1

3c2
h̄cπ2

240d4
(8)

The significance of this equation is that it indicates that
the calculated “density” expectation value using the Bohr
relationships for the energy and radius may have physical
meaning as opposed to just a calculated number.
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Consider the Casimir force (and Casimir equation) as
it has been explored in the lab to date by numerous ex-
perimentalists with the work done by Steven Lamoreaux
in 1996 establishing convincing experimental evidence of
the phenomenon [2]. The Casimir force equation is used
in practice to assess the force developed for a given geom-
etry associated with a real test article that will be studied
in the laboratory. When the force per unit area equation
is applied to the real test article being studied in the lab,
the equation provides a number that really does have
physical meaning as evidenced by the real force that is
measured during the study of the test article. The state
of the quantum vacuum between two plates that estab-
lish a Casimir cavity is perturbed (rarified) as a result of
the plates precluding certain vacuum fluctuation modes
from being manifested in the cavity. The pressure inside
the cavity is less than the pressure outside of the cavity.

Since the “density” using the Bohr relationships has
been shown to make predictions of the energy density
around the hydrogen nucleus that are identical to the
modified Casimir force per unit area equation, this may
indicate that these numerical values do have physical
meaning and are not just a numerical calculation with no
basis in nature. To be explicit, these values may indicate
that the quantum vacuum around the hydrogen nucleus
is not an immutable and non-degradable medium with
no variation or structure, rather the vacuum appears to
have a perturbation around the hydrogen nucleus that
exhibits a strong dependency on 1/r4.

What if one considers the scenario when the atomic
number Z is varied? The course is similar to the above
treatment for hydrogen, except the Bohr relationships
used are the equations with the Z dependency included.
For this discussion, the primary quantum number n will
be spanned from 1 to 7, and the atomic number Z will
be spanned from 1 to 7, which corresponds to hydrogen,
helium, lithium, beryllium, boron, carbon, and nitrogen
respectively. The expectation value for the “density”
is shown in FIG. 1 for each atomic number. The ob-
served “density” is determined using Equation (5), and
the Casimir “density” is determined using Equation (9):

〈ρ〉 =
Z

3c2
h̄cπ2

240d4
. (9)

A trend line has been added to each series to visually
link each set of primary quantum numbers together for
a given atomic number Z, and help illustrate the 1/r4

dependency. A mark is plotted for each combination of
Z and n for the “density” expectation value. The mod-
ified Casimir force per unit area value is also calculated
for each point with the inclusion of Z in the numerator
of the equation as shown in Equation (9), and is plotted
as an open circle. The figure shows that as the atomic
number Z increases, the curves trends upward, and the
n = 1 state progresses to the left as it should. For higher
atomic numbers, the perturbation of the quantum vac-
uum is slightly higher than for lower atomic numbers.

B. Continuous Density Function

To this point, the discussion has been about the expec-
tation value for the “density” of the quantum vacuum for
a given primary quantum number with no consideration
of substructure or variation within the given spherical
region. The interpretation is that the predicted “den-
sity” is an isotropic state throughout the orbital defined
by the corresponding allowed radius. Since it was just
shown that the expectation value for the density at each
allowed orbit radius is dependent on 1/r4, it is reason-
able to expect that there is a more continuous represen-
tation of the density of the quantum vacuum that varies
continuously over the radial distance from the nucleus.
This continuous function can be found by establishing
the requirement that the volumetric integral of the den-
sity (multiplied by c2) is equal to the energy level allowed
for each primary quantum number. The differential el-
ement to integrate is a thin spherical shell element that
starts at the “radius” of the proton and continues to the
allowed radius associated with the target quantum num-
ber:

dE = ρ (r) c24πr2dr, ρ (r) =
A0

r4
, (10)

where the term A0 is a proportionality constant that is
to be determined to ensure that the continuous function
will yield the energy level for each quantum number. The
integral to solve is simple enough (neglecting the constant

10−11 10−10 10−9
10−12

10−9

10−6

10−3

100

Z = 1

Z = 2

Z = 3

Z = 4
Z = 5

Z = 6
Z = 7

n = 1

n = 7

radius (meters)

ρ
(k
g
/m

3
)

Z = 1 observed

Z = 2 observed

Z = 3 observed

Z = 4 observed

Z = 5 observed

Z = 6 observed

Z = 7 observed

CASIMIR

FIG. 1: Perturbation of the Vacuum - derived
“density” plotted for n = 1 to n = 7 for Z = 1 through
Z = 7. The bottom line labelled Z = 1 represents

hydrogen, and labels for the points representing n = 1
and n = 7 have been added. The Casimir values are

also plotted as hollow circles.
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of integration):

E = c2
∫ rn

r0

A0

r2
4πdr

= −4πA0c
2

2

(
1

r3n
− 1

r30

)
. (11)

The term r0 is the effective “radius” of the proton, and rn
is the allowed radius of the quantum number n. There are
three options to use for the proton radius in this calcu-
lation. The first option is to use the charge radius of the
proton which has a measured value of 0.88fm [14], the
second is to use the Compton wavelength of the proton
which is 1.32fm, and the third option is to use the his-
torical Rutherford empirical equation, R = R0Z

1
3 where

R0 = 1.2fm, and Z again is the atomic number yield-
ing a radius of 1.2fm for the hydrogen nucleus. The
third option of 1.2fm will be used for the remainder
of this treatment. Using this yields a value for A0 of
2.312 × 10−51. The continuous density function for the
quantum vacuum is shown in Equation (12) and includes
the necessary dependency on the atomic number Z:

ρ (r) =
Z2

n2
2.312× 10−51

r4
. (12)

A plot of this function for hydrogen is shown in FIG.
2. Rather than being a series of step functions stepping
down from a large value for n = 1 to a small value when
n = 7 as was previously the scenario in the isotropic
view, this curve is now a continuous function with slight
shifts at the allowed radii which could be construed as
soft boundaries between the energy levels. So rather
than the density of the quantum vacuum being a uni-
form 3.9 × 10−5kg/m3 over the entire spherical region
defined by the Bohr radius for n = 1, it starts out con-
siderably higher just outside the nucleus and tapers down
to 2.95× 10−10kg/m3 at the Bohr radius. On average, it
is 3.9×10−5kg/m3, but it varies continuously over radial
distance r.

If the vacuum is indeed not an immutable and non-
degradable medium, but rather a medium that can vary,
as first evidenced by direct observation of the Casimir
force, what can be said about what has been developed
in this discussion? A thing to note is that the integral
of the perturbation of the quantum vacuum around the
nucleus for a given atomic number Z and quantum num-
ber n is exactly equal to the energy level of the electron
in that state. The energy level of the electron is a func-
tion of its potential energy and kinetic energy. Does this
mean that the energy of the quantum vacuum integral
needs to be added to the treatment of the captured elec-
tron as another potential function, or is the energy of
the quantum vacuum somehow responsible for establish-
ing the energy level of the “orbiting” electron? The only
view to take that adheres to the observations would be
the latter perspective, as the former perspective would
make predictions that do not agree with observation. It
was shown earlier that the perturbation of the vacuum

around the nucleus appears to have characteristics very
similar to that of the Casimir force per unit area, and
since the Casimir force per unit area is negative; the in-
tegral of the vacuum perturbation would also be negative.
So for n = 1, Z = 1, the energy for the captured elec-
tron is −13.6eV , and likewise, the integral of the vacuum
perturbation is −13.6eV .

C. Longitudinal Vacuum Waves

If the quantum vacuum is indeed not a static im-
mutable medium, can be locally perturbed as the above
assessment indicates may be the case, and that this per-
turbed medium can be shown to be related to the bind-
ing energy of trapped electrons, what other characteris-
tics might the medium have that should be considered?
If the quantum vacuum is a sea of vacuum fluctuations
consisting of virtual photons and virtual fermions (e.g.
electron-positron pairs and others), then it may be use-
ful to study the types of wave modes that are possible
for this medium that has a 1/r4 density dependency.
The discussion will be specific to acoustic wave modes,
as solutions to acoustic wave modes in a spherical region
with soft boundaries are determined using the Helmholtz
equation, and will yield wave modes with mathematical
forms that are identical to the electron probability wave
functions. A couple of points need to be made before
proceeding. First, acoustic modes in air are longitudinal
waves that propagate as a result of collisional process be-
tween the neutrals that make up the air. Acoustic wave
modes in a plasma medium are not communicated by
means of collisional process, rather the longitudinal wave
propagates as a result of the charged particle motion be-
ing relayed to other charged particles by means of the

0 1 2 3

·10−9

10−21

10−13

10−5

103

1011

n = 1

n = 2
n = 3

n = 4
n = 5 n = 6 n = 7

radius (meters)

ρ
(k
g
/m

3
)

FIG. 2: Continuous Function of the Vacuum
Perturbation for Hydrogen: this function was used in

the COMSOL analysis discussed in Section II C.
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intermediary electric field. Second, consider an acoustic
mode analog that looks like one of the three 2p orbitals
as shown in FIG. 3 [15]. In the acoustic case, the mode

FIG. 3: Plot for the Z = 1, 2p orbital from Orbital
Viewer Software.

has two areas of maximum and minimum pressure sepa-
rated by a region of neutral pressure that is defined by
the nodal surface. In an acoustic mode, particles oscil-
late from the high pressure region to the low pressure
region where they will reflect back again as the wave cy-
cle oscillates. The particles are at their slowest, minimal
displacements from reflection, and spend the most time
in these extreme pressure regions, whereas they are at
their fastest and largest displacements when they cross
the nodal surface (or surfaces depending on mode). If
one were to “mark” a particle that is a member of the
acoustic continuum medium and try and “find” that par-
ticle or observe that particle at a particular moment in
time, the odds are higher that the particle will be found
within the high pressure lobes and lower that the parti-
cle will be found at the nodal surface. This is a classical
analogy to the probability function that determines the
likelihood of observing an electron (in a particular state)
at some point around the nucleus.

The vacuum density function for hydrogen defined by
Equation (12) and plotted in FIG. 2 can be modelled
and studied using the high fidelity industry tool, COM-
SOL Multiphysics. The vacuum medium can be mod-
elled as a virtual plasma consisting of predominantly
electron-positron ephemeral pairs. Although there will
be a spectrum of other fermion-antifermion particle pairs,
the dominant members of the medium at any given time
will be the e−-e+ pairs. The speed of sound in a plasma
can be calculated using Equation (13) [16].

vs =

√
kTe
M

(13)

The way this equation is applied to a classical plasma
is that the Te is the temperature of the electrons, and M
is the mass of the ions. In the initial consideration of the
hydrogen atom, the mass of the proton will be used for
M . It should be noted that it is likely that M will be a
lower mass value that is representative of either relativis-
tic e−-e+ pairs, or heavier charged fermion-antifermion

pairs. The “average” temperature of the quantum vac-
uum modelled as a virtual plasma within a given energy
state around the hydrogen nucleus will be set equal to the
equivalent kinetic temperature of the orbiting electron at
that state. In this view, the real electron at the n = 1
state has a thermal speed of αc. The temperature corre-
sponding to this thermal speed is found from the equipar-
tition theorem using the relationship 1/2mev

2 = 3/2kTe,
or kTe = 1/3m(αc)2 for the n = 1 case.

A possible source of longitudinal waves is the hydrogen
nucleus. Continuing with the quasi-classical viewpoint,
the electron in the n = 1 state is “orbiting” around
the proton at an average distance of the Bohr radius
(5.29 × 10−11m) with an orbital speed of αc. Similarly,
the proton is oscillating around the electron-proton sys-
tem center of mass at the same frequency and it acts
as a longitudinal wave source for the surrounding quan-
tum vacuum medium. The frequency of this oscillation
can be considered the eigenfrequency of the longitudinal
wave associated with this quantum state. When run-
ning a COMSOL acoustic analysis of this system, the
objective is to find the COMSOL-determined acoustic
resonance frequency for each of the seven primary quan-
tum number states (spherical acoustic modes defined by
their corresponding Bohr radii) and compare it to the
target frequency determined using the electrons orbital
frequency. The target frequencies for the primary quan-
tum numbers are given in TABLE III.

TABLE III: This table shows the “orbital” frequency
for the n = 1 to n = 7 states for hydrogen, and the

sound speed.

n Thermal vela Orbital freqb Sound speedc

1 2.19 × 106 6.5808 × 1015 29, 476
2 1.09 × 106 8.2260 × 1014 14, 738
3 7.29 × 105 2.4373 × 1014 9, 825
4 5.47 × 105 1.0283 × 1014 7, 369
5 4.37 × 105 5.2646 × 1013 5, 895
6 3.65 × 105 3.0467 × 1013 4, 912
7 3.12 × 105 1.9186 × 1013 4, 210

a Thermal velocity is in m/s.
b Orbital frequency is in Hz.
c Sound speed is in m/s.

Since this phase of the analysis is centered on finding
the spherical acoustic modes for all of the primary quan-
tum numbers, a 2D axisymmetric model was used. This
allowed for very fine mesh size when studying the n = 1
mode. FIG. 4 shows a close-up of the innermost region
roughly defined by the Bohr radius, 5.29× 10−11m. The
mesh size for this region of the model was set to one pi-
cometer within the spherical region defined by the Bohr
radius.

FIG. 5 shows the eigenfrequency associated with the
spherical acoustic mode that falls within the n = 1 spher-
ical region of the model. Note that the quantum vac-
uum density used in the COMSOL analysis is the con-
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tinuous curve defined by Equation (12), and there are
no “hard” boundaries in the model. The picture on the
left of FIG. 5 is the view from the outer extents of the
model, and the picture on the right is a close-up of the
mode with a cutaway depicting the intensity distribution
of the mode. This analysis result shows that this eigen-
frequency is 5.3944 × 1014Hz, whereas the hope was to
find that this frequency was at 6.5808 × 1015Hz. In or-
der to ensure that the eigenfrequency falls at the target
value, the sound speed model will need to be scaled up
by a factor of 11. This means that all of the sound
speeds listed in Table III will be an order of magnitude
higher. This also requires that the mass in the denom-
inator of Equation (13) is not the proton mass, but an
effective mass of 15.2× that of the electron. It should
be noted that in [17], the authors determined that in
order to accurately predict the permittivity, ε0, and per-
meability, µ0, of the vacuum of space arising as a result
of quantum vacuum fermion pair fluctuation interaction
with propagating photons, the quantum vacuum would
need to routinely produce fermion pairs in a relativistic

FIG. 4: Close-up of COMSOL 2D axisymmetric model.

(a) Macroview (b) Microview

FIG. 5: COMSOL analysis results for n = 1
eigenfrequency: panel 5a shows the model out to the

n = 6 orbital, and panel 5b shows a close-up view of the
n = 1 solution

condition with a mass factor of 31.9. A scaling factor
of 11 was used for all subsequent COMSOL analysis to
find eigenfrequencies representative of the seven primary
quantum numbers for the hydrogen model.

FIG. 6 shows the expanded view of the COMSOL 2D
axisymmetric model used for finding eigenfrequencies.
The model mesh sizing is provided to the right of the
model picture, and the dense mesh sizing is apparent as
the elements become unresolvable at the resolution of the
figure below the primary quantum number, n = 6.

FIG. 6: COMSOL 2D axisymmetric model: element
sizes for n = 1 to n = 7 is 1pm, 2.5pm, 5pm, 10pm,

25pm, 50pm, and 50pm respectively. In this figure, the
mesh size is too dense to be discernable for n = 5 and
lower. FIG. 4 shows the mesh for the n = 1 and n = 2

regions.

TABLE IV presents the longitudinal mode eigenfre-
quencies for the n = 1 to n = 7 orbitals. For each row,
the expected value is listed in the left column, and the
COMSOL eigenfrequency value is provided to the right
along with a % error. For a primary quantum number,
the expected value is the frequency that the proton would
oscillate about the system center of mass that consists of
the proton and the orbiting electron. FIG. 7 shows the
eigenfrequency solution plots that correspond to those
recorded in TABLE IV

III. CONCLUSIONS

This paper has explored the idea of the quantum
vacuum not being an absolute immutable and non-
degradable state, and studied the ramifications of the
quantum vacuum being able to support non-trivial spa-
tial variations in “density.” These considerations showed
no predictions that were contrary to observation, and
in fact duplicated predictions for energy states associ-
ated with the primary quantum number. An explicit
function of vacuum density spatial variation was de-
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TABLE IV: This table shows the predicted “orbital”
frequency and the COMSOL analysis eigenfrequencies

for the n = 1 to n = 7 states for hydrogen.

n Orbital freqa COMSOL freqb %error
1 6.58 × 1015 6.25 × 1015 −4.98
2 8.23 × 1014 8.23 × 1014 0.05
3 2.44 × 1014 2.38 × 1014 −2.48
4 1.03 × 1014 1.01 × 1014 −1.59
5 5.26 × 1013 4.98 × 1013 −5.36
6 3.05 × 1013 3.48 × 1013 14.28
7 1.92 × 1013 2.13 × 1013 11.16

a Orbital frequency is in Hz.
b COMSOL frequency is in Hz.

n = 1 n = 2 n = 3 n = 4 

n = 5 n = 6 n = 7 

FIG. 7: COMSOL analysis results of the acoustic
“natural” vacuum model The orbital shells (dark lines)
can be counted, but the n = 1 radius is quite small as

seen from the top left thumbnail that depicts the
COMSOL eigenfrequency solution for that orbital.

rived such that it also predicted correct energy levels for
the primary quantum numbers, and provided a simple
acoustic model that could be numerically studied using
the multi-physics software tool, COMSOL. This study
showed that the quantum vacuum can support longitudi-
nal wave modes with mode shapes and frequencies com-
mensurate with proton oscillation about the center of
mass of the electron-proton “rotating” system associated
with the primary quantum numbers. The spin-orbit cou-
pling mode shapes associated with the p, d, and f orbital
shapes are also viable acoustic wave mode solutions, and
will be non-degenerate with slightly different frequencies,
and hence, energies. It is a matter of future work to fully
explore the p, d, and f orbital mode shapes using the
explicit vacuum density function with a 3D model of suf-
ficient resolution. The 2D approach was used for com-
putational speed while maintaining fine mesh size. Some
examples of the COMSOL results from a 3D model of
a classical spherical resonance system with isotropic air

medium are shown in FIG. 8. In the process of search-

FIG. 8: Acoustic eigenmodes for air in a 9in. diameter
spherical isotropic air cavity with soft wall boundary. A

detailed analysis and experiment measuring acoustic
frequencies of a ringing basketball was performed and

documented in [18].

ing for the n = 1 to n = 7 primary quantum number
eigenfrequencies using the 2D COMSOL model, some so-
lutions mapped to the non-spherical, but axisymmetric
electron orbitals from the p, d, and f families. Three
examples are provided in FIG. 9. These results suggest
that the analytical methods used in this paper that were
successful at the Bohr level, can be expanded to yield so-
lutions that exhibit the full wave characteristics of QED
associated with the Schrödinger wave equation:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V ψ.

There are a number of approaches detailed in the lit-
erature that seek to develop different interpretations or
understandings of the origin of the wave equation, and
we will only touch on few of the concepts in closing. The
orthodox view is of course the Copenhagen interpretation
which, in short, does not seek to assign any classical na-
ture to the wave equation by itself, rather only considers
the wave’s statistical impact on configuration space[19].
The de Broglie-Bohm theory [20] posits the existence of
a guiding global wave equation (known as the pilot wave)
in a purely classical world and probabilistic quantum na-
ture only arises as a consequence of the influence of this
pilot wave on the classical world. Stochastic interpre-
tations can be viewed as essentially fully classical inter-
pretations of the wave equation that arises as a result
of interaction with a pervasive classical zero-point radia-
tion field (vacuum fluctuations) [21, 22]. Most recently, a
paper was put forth that articulates another formulation
in the debate known as a Many Interacting Worlds[23]
formulation. In the MIW view, the world we live in is
completely classical, but the equations of motion include
a repulsive quantum force term that originates as a result
of the interaction between N number of classical worlds
that are close in configuration space (N can be finite or
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infinite), and the wave equation is an emergent charac-
teristic in the limit of this fully mechanical theory. In
our approach discussed in this paper, the ground state
of the quantum vacuum has been shown to possibly ex-
hibit structure and spatial variation that depends on the
boundary conditions present, and this dynamic variation
can be successfully modelled in a quasi-classical (if not
fully classical) sense with COMSOL. Indeed, the wave
nature of the electron orbitals within the hydrogen atom
possibly have a quantum vacuum longitudinal wave mode
origin explanation.

FIG. 9: 2D Axisymmetric model results that capture
axisymmetric acoustic solutions like 2p, 3d, and 4f

orbitals (m = 0).

The paper will close with the following thought exper-
iment: If the vacuum around the nucleus can be con-
sidered more of a “natural” vacuum as opposed to an
immutable ground state with absolutely no spatial vari-
ation, and if there are ephemeral fermion/antifermion
pairs dominated by electron-positron pairs that create
and annihilate with a density that increases significantly
as one moves closer to the nucleus, what is so special
about the orbiting electron that allows it to be a “real”
electron out of this vacuum soup? Perhaps it is not a case
of uniqueness, but a case of non-uniqueness. Consider the
following: A room full of paired square dancers progresses
through the dance moves smoothly as called by the caller,
and they occasionally change partners when instructed.
What if there were an additional solitary dance partner
of a given gender introduced to the ranks of this evenly

matched group, and the rule is established that when a
trade call is issued, the free dancer will couple to the
nearest available dance partner of the opposite gender,
and the previously paired dancer that misses out is now
the free dancer until the next trade call is issued. As
the evening progresses, nearly every dance partner of the
gender that had the extra dancer has had a period where
they were the “unique” solitary dancer. In an analogous
way, perhaps the “real” electron is also “unique”. In
one instance, the “real” electron collides with a positron
vacuum fluctuation elevating the now un-paired electron
vacuum fluctuation to the “real” state. This real electron
continues in its real state for a brief period until it too
collides with a positron vacuum fluctuation, elevating the
next un-paired electron vacuum fluctuation to the “real”
state. This process continues ad infinitum, and the “real”
electron is not unique, rather it is non-unique in that the
“real” descriptor is associated with the state, not the in-
dividual electron. So if the “real” electron is simply a
unique state of the underlying natural vacuum, an un-
matched dance partner in the sea of dancers, then the
probability wave functions for the electron states may be
a dual representation of the longitudinal acoustic wave
modes that arise as a result of the dynamics of this nat-
ural vacuum.
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